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INTRODUCTlON 

IN AN earlier publication, Winegardner and Schmitz [l] 
reported results of a theoretical investigation into the 

transient nature of a chemical system reacting hetero- 

geneously in the vicinity of a stagnation point. That study 

pointed out that some steady states were unstable to small 

disturbances and by means of a numerical example cited 

situations for which no stable state existed. The study was 

limited in scope because the analysis was based on linearized 

equations and as a result was capable of describing only the 

response to very small disturbances. It could not. for example. 
yield information concerning the amplitude or frequency of 

sustained oscillations. or of describing any other large-scale 

transient phenomena. 

This paper presents numerical solutions of the nonlinear 

unsteady state equations describing the stagnation-flow 

problem considered in [l]. Because the numerical study 

necessitates fixing the values of parameters and kinetic 

constants and because some unrealistic assumptions are 

involved, general conclusions are not posse ble. Still the results 

should provide considerable insight into the unsteady state of 
systems involving diffusion of heat and mass coupled with 

an exothermic chemical reaction, 

Most prior studies of nonlinear effects m stability con- 

siderations 01 chemically reacting systems have been de- 

voted to perfectly-mixed or so-called “lumped-parameter” 

problemsforwhich thetransientstateisdescribed by ordinary 

differential equations. These have followed the early work 

of Aris and Amundson [t]. Similar studies of nonlinear 
effects in potentially unstable distributed or spatially- 

dependent reaction systems involving diffusive transport 

and finite-rate chemical kinetics are less common. Raymond 

and Amundson [3] have reported some computer simula- 

tions of such systems as have Kirkby and Schmitz [4]. 

Recently Lee and Luss [5] simulated the transient state of a 

* R. C. Lindbergis presently with the Continental Oil 

Company, Ponca City, Oklahoma. 

porous spherical catalyst particle with exothermic reaction 

proceeding in the pores and succeeded in illustrating a 

sustained oscillatory state for small values of the Lewis 

number. 

Frequent reference will be made hercin to equations and 

figures contained in [l]. For convcmence in this regard, the 

symbol A will be attached to all numbers assigned to figures 

and equations in the present paper; numbers without the 

attached A refer to equations or figures in [ 11. 

EQUATIONS AND ASSUMPTIONS 

The assumptions employed in the numerical example of 

[l] were also invoked in all computations in the present 

study. In addition, the kinetic expression and the expression 

for heat losses from the surface were taken to be those in 

equations (49) and (50). The velocity field was assumed to 

be at its steady state at all times. Thus the dimensionless 

stream function q(rt) was taken to be the tabulated solution 

of equations (1) and (2). In summary then, the unsteady state 

of the chemically reacting system of interest here is described 

by the following equations : 
ac ?c PC 
~~ - f+?(n) ~~ = 
i;r ?t/ i$ 

(124) 

t2A) 

r, = 1 : (‘= 1 
t4A) 

T = 7; 

where c is the reduced concentration, C,tC,,. of reactant 

A. All other symbols are as defined in [ 1). 

The numerical values of the parameter groups ksJ(uD). 
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(AHK,,C,, E and k,J(a!D) were taken to be those given 

m equation (51) in all cases reported here*. 

This system of parabolic partial differential equations was 

solved numerically in the present work by an implicit 

finite-difference scheme. Advantage was taken of the fact 

that the partial differential equations themselves are linear, 

nonlinearities being confined to the boundary conditions in 

equation (3A). The solution method used closely parallels 

that described by Lindberg and Schmitz [6] in connection 

with a study of a surface reaction in nonsimilar laminar 

boundary-layer flows. The procedural details are omitted 

here since the application of the method to the particular 

problem at hand is straightforward. Details regarding 

increment sizes and tests of accuracy are available elsewhere 

[7]. Generally, at least three-figure accuracy in instantaneous 

temperatures was assured in all computations. 

RESULTS AND DISCUSSIONS 

Unique unstable state 
Steady state solutions and the results of a linear stability 

study the problem at hand were conveniently summarized 

in Figs. 3 and 4. Among the more interesting and curious 

features of those results is the possibility of a system possess- 

ing no stable state at all. As can be seen from Fig. 4, this is the 

case for a range of values of h for T’,‘, = 1000°K and for 

T, = 920°K. The result of a numerical simulation of the 

unsteady state for one such case (T, = 1000°K; h = 40.0) 

is shown in Fig. 1A. The initial state was taken to be the 

I’ I 11’1 1 I’ , 
‘800- Tm = 1000 OK 

h = 400 Btu /h ft2 “K 

1000 
L Unstable steady state 

I I, I,, / , I / , , 
0 0.2 0.4 O-6 0.8 I.0 I.2 

r 

FIG. IA. Temperature oscillations for a case of a unique 
unstable steady state. 

* The quantity k/J(aD) was printed erroneously as 
k.j(aD) in [l]. The value for k/(aD)* of 236 x 10’ was 
employed in all computations here as well as in [ 11. 

stable steady state for h = 52-O. (The units of h everywhere 

are Btu hft’“K). Figure 1A shows that oscillations about the 

unstable state set in and reach a constant amplitude and 

period within 2 or 3 cycles. The period of the steady oscilla- 

tions is @177 in the dimensionless time units of r. As shown in 

Fig. lA, the maximum surface temperature encountered in 

the region of steady oscillations is about 1635°K. For com- 

parison, the constant temperature of the surface correspond- 

ing to the unstable steady state is about 1135°K. 
While Fig. 1A shows only the surface temperature varia- 

tion with time, it follows that the concentration and tempera- 

ture both approach periodic behavior at all values of the 

spatial variable 1. At any fixed spatial position, including 

r) = 0, the state of the system, once steady oscillations have 

been reached, follows a closed curve in the concentration- 

temperature plane, the curve shrinking to a point as r, 

becomes large. The collection of these closed curves for all 

r) values defines a “limit surface” in the three-dimensional 

space of c, T and ~1. The surface does not depend on the par- 

ticular initial state of the system. The unsteady profiles 

generated in obtaining the results in Fig. 1A showed that 

the amplitude of the oscillations decreases sharply with 
increasing n. and for 1 values beyond O-5 they are hardly 

It should be noted that any appreciable extraneous heat 

capacities, such as that of the solid wall. would be expected 

to have a significant effect on the stability picture. In par- 

ticular the effect woutd cause damping or reduction in the 

amplitude of oscillations. Such effects have been explored in 

a previous study of a similar problem [8]. 

Simulation of extinction resulting from instabilities 
If one traces the steady-state curve for T, = 900°K in 

Fig. 4 beginning at some low value of h, say h = 10, allowing 

a steady state to be achieved after each change, stable states 

of high chemical activity should be encountered up to 

h = 17-2. Beyond that value, the high-temperature states 

are unstable to small disturbances, but at the same time there 

exists a low temperature or “extinguished” stable state in 

which very little chemical reaction is taking place. The 

objective of the numerical solutions to be described here 

was to simulate such a procedure in which stepwise changes 

in h are made, and to observe the resulting unsteady state 

particularly when the unstable regime is encountered. Such 

changes in h may not correspond to an obvious experimental 

procedure, but similar behavior would be observed as well 

for other types of changes or for changes in other parameters. 

The effect of the parameter h is a convenient one to represent 

in connection with Fig. 1. 
Curve (a) in Fig. 2A shows the temperature history of 

q = 0 following the final step in h from 17.2 to 17.6. For this 

step the initial state was an apparently stable state arrived 

at by changing h from 16.8 to 17.2. The curve in Fig. 2A 
illustrates an exponential decrease in temperature from the 

high initial temperature and a damped oscillatory approach 
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FIG. 2A. Extinction of a high-temperature steady state 

to the low-temperature or extinguished state. The oscillatory 

approach to the low stable state is as expected from the results 

of the linear study shown in Fig. 3. From those results one 

might also have expected the growth from the initial high 

temperature to be oscillatory since the high-temperature 

steady state corresponding to h = 17.6 lies in region V of 

Fig. 3. However, in most cases that were simulated, oscilla- 
tions near a high-temperature state were, at best, barely 

observable. In particular, oscillatory growth of perturbations 

was observable only if the perturbation from the unstable 
profile was very small. For example, curve (b) of Fig. 2A 

represents a temperature transient for T, = 800°K and 

h = 13.0 for a situation in which the initial state was taken 
to be the unstable concentration and temperature profiles 
for h = 13.0 with accuracy to two decimal places. The result 

illustrates the expected unstable oscillatory character of the 

high-temperature state. However, when the initial state was 

taken to be the high-temperature state at h = 12.5, the 

resulting transient following a step change to h = 13.0 
showed an exponential temperature decrease. These results 

illustrate one of the shortcomings of a study of linearized 
equations. The linear equations probably describe correctly 

the nature of the behavior for small perturbations. but fail 

generally to yield information on how small the perturbations 
must be. 

In the cases shown in Fig. 2A the transient behavior led 

to extinction of the chemical reaction. There may have been 

some question beforehand as to whether oscillations would 

be sustained about the unstable state just as if no stable state 

existed. There appears to be no obvious way to rule out that 
possibility a priori. However, in all simulations carried out 

in this study, the system was found to approach steady-state 

operation at a stable state whenever a stable state existed. 

It is of interest to note than an analysis of steady state 
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results alone (from Fig. 4 with the assumption that all high- 

temperature states are stable) would have indicated extinc- 

tion of the chemical reaction for T, = 900°K when h 

exceeded a value of 228. 

Two stable states 

In the final case to be described here, Tm was taken to be 

at 800°K and h was fixed at a value of 10. Under these 

conditions, there are two stable steady states, as shown in 

Fig. 4. The purpose of numerical computations for this case 
was to illustrate the effect of the initial state on the ultimate 
performance of the system. In all solutions, the initial value 

of c was set to equal to unity everywhere, and the temperature 

profile was the steady temperature profile for chosen values 

of the surface temperature with reactivity at the surface equal 

to zero; i.e. either k = 0 or c(q) = 0 for r < 0. Different 

initial profiles were generated by various choices of the 

initial surface temperature T,. The question asked is: 

What is that value of T, above which all transients lead to the 
high-temperature steady state? This might be considered 

equivalent to asking: What is the ignition temperature of the 

heterogeneous reaction system? Interpreted in this manner 

and in certain other ways, which may be more meaningful 

as far an actual experimental situation is concerned, the 

ignition condition is not predictable from steady state 

solutions or from a linear analysis. 

Results of transient solution are shown in the form of a 

phase plane representation of the state at 7 = 0 in Fig. 3A. 

The trajectories in that figure clearly show that ignition of 

the reaction is attained for ‘F, > 986°K. 
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